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1 Multi-Junction Transmission Lines

By concatenating sections of transmission lines of different characteristic imped-
ances, a large variety of devices such as resonators, filters, radiators, and match-
ing networks can be formed. We will start with a single junction transmission
line first.

1.1 Single-Junction Transmission Lines

Consider two transmission line connected at a single junction as shown in Figure
1. For simplicity, we assume that the transmission line to the right is infinitely
long so that there is no reflected wave. And that the two transmission lines
have different characteristic impedances, Z01 and Z02.

Figure 1:

The impedance of the transmission line at junction 1 looking to the right,using
the formula from the previous lecture, is

Zin2 = Z02
1 + ΓL,∞e

−2jβ2l2

1− ΓL,∞e−2jβ2l2
= Z02 (1.1)

since no reflected wave exists, ΓL,∞ = 0, the above is just Z02. Transmission
line 1 sees a load of ZL = Zin2 = Z02 hooked to its end. The equivalent circuit
is shown in Figure 1 as well. Hence, we deduce that the reflection coefficient
at junction 1 between line 1 and line 2, using the knowledge from the previous
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lecture, is Γ12, and is given by

Γ12 =
ZL − Z01

ZL + Z01
=
Zin2 − Z01

Zin2 + Z01
=
Z02 − Z01

Z02 + Z01
(1.2)

1.2 Two-Junction Transmission Lines

Now, we look at the two-junction case. To this end, we first look at when line
2 is terminated by a load ZL at its end as shown in Figure 2

Figure 2:

Then, using the formula derived in the previous lecture,

Zin2 = Z02
1 + Γ(−l2)

1− Γ(−l2)
= Z02

1 + ΓL2e
−2jβ2l2

1− ΓL2e−2jβ2l2
(1.3)

where we have used the fact that Γ(−l2) = ΓL2e
−2jβ2l2 . It is to be noted that

here, using knowledge from the previous lecture, that

ΓL2 =
ZL − Z02

ZL + Z02
(1.4)

Now, line 1 sees a load of Zin2 hooked at its end. The equivalent circuit is
the same as that shown in Figure 1. The generalized reflection coefficient at
junction 1, which includes all the reflection of waves from its right, is now

Γ̃12 =
Zin2 − Z01

Zin2 + Z01
(1.5)

Substituting (1.3) into (1.5), we have

Γ̃12 =
Z02( 1+Γ

1−Γ )− Z01

Z02( 1+Γ
1−Γ ) + Z01

(1.6)

where Γ = ΓL2e
−2jβ2l2 . The above can be rearranged to give

Γ̃12 =
Z02(1 + Γ)− Z01(1− Γ)

Z02(1 + Γ) + Z01(1− Γ)
(1.7)
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Finally, by further rearranging terms, it can be shown that the above becomes

Γ̃12 =
Γ12 + Γ

1 + Γ12Γ
=

Γ12 + ΓL2e
−2jβ2l2

1 + Γ12ΓL2e−2jβ2l2
(1.8)

where Γ12, the local reflection coefficient, is given by (1.2), and Γ = ΓL2e
−2jβ2l2

is the general reflection coefficient at z = −l2 due to the load ZL. In other
words,

ΓL2 =
ZL − Z02

ZL + Z02
(1.9)

Figure 3:
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Figure 4: Different kinds of waveguides in power lines, RF, microwave, and
optics. (courtesy of Owen Casha.)

Equation (1.8) is a powerful formula for multi-junction transmission lines.
Imagine now that we add another section of transmission line as shown in Figure
3. We can use the aforementioned method to first find Γ̃23, the generalized
reflection coefficient at junction 2. Using formula (1.8), it is given by

Γ̃23 =
Γ23 + ΓL3e

−2jβ3l3

1 + Γ23ΓL3e−2jβ3l3
(1.10)

where ΓL3 is the load reflection coefficient due to the load ZL hooked to the end
of transmission line 3 as shown in Figure 3. Here, it is given as

ΓL3 =
ZL − Z03

ZL + Z03
(1.11)

Given the knowledge of Γ̃23, we can use (1.8) again to find the new Γ̃12 at
junction 1. It is now

Γ̃12 =
Γ12 + Γ̃23e

−2jβ2l2

1 + Γ12Γ̃23e−2jβ2l2
(1.12)

The equivalent circuit is again that shown in Figure 1. Therefore, we can use
(1.8) recursively to find the generalized reflection coefficient for a multi-junction
transmission line. Once the reflection coefficient is known, the impedance at that
location can also be found. For instance, at junction 1, the impedance is now
given by

Zin2 = Z01
1 + Γ̃12

1− Γ̃12

(1.13)
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instead of (1.3). In the above, Z01 is used because the generalized reflection
coefficient Γ̃12 is the total reflection coefficient for an incident wave from trans-
mission line 1 that is sent toward the junction 1. Previously, Z02 was used in
(1.3) because the reflection coefficients in that equation was for an incident wave
sent from transmission line 2.

If the incident wave were to have come from line 2, then one can write Zin2

as

Zin2 = Z02
1 + Γ̃23e

−2jβ2l2

1− Γ̃23e−2jβ2l2
(1.14)

With some algebraic manipulation, it can be shown that (1.13) are (1.14) iden-
tical. But (1.13) is closer to an experimental scenario where one measures the
reflection coefficient by sending a wave from line 1 with no knowledge of what
is to the right of junction 1.

Transmission lines can be made easily in microwave integrated circuit (MIC)
by etching or milling. A picture of a microstrip line waveguide or transmission
line is shown in Figure 5.

Figure 5:
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1.3 Stray Capacitance and Inductance

Figure 6:
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Figure 7: A generic microwave integrated circuit.

The junction between two transmission lines is not as simple as we have assumed.
In the real world, or in MIC, the waveguide junction has discontinuities in line
width, or shape. This can give rise to excess charge cumulation. Excess charge
gives rise to excess electric field which corresponds to excess electric stored
energy. This can be modeled by stray or parasitic capacitances. Alternative,
there could be excess current flow that give rise to excess magnetic field. Excess
magnetic field gives rise to excess stored magnetic energy. This can be modeled
by stray or parasitic inductances. Hence, a junction can be approximated by a
circuit model as shown in Figure 8 to account for these effects. The Smith chart
or the method we have outlined above can still be used to solve for the input
impedances of a transmission circuit when these parasitic circuit elements are
added.

Notice that when the frequency is zero of low, these stray capacitances and
inductances are negligible. But they are instrumental in modeling high fre-
quency circuits.

8



ECE 604, Lecture 13 Fri, Feb 8, 2019

Figure 8:

2 Duality Principle

Duality principle exploits the inherent symmetry of Maxwell’s equations. Once a
set of E, H has been found to solve Maxwell’s equations for a certain geometry,
another set for a similar geometry can be found by invoking this principle.
Maxwell’s equations in the frequency domain, including the fictitious magnetic
sources, are

∇×E(r, ω) = −jωB(r, ω)−M(r, ω) (2.1)

∇×H(r, ω) = jωD(r, ω) + J(r, ω) (2.2)

∇ ·B(r, ω) = %m(r, ω) (2.3)

∇ ·D(r, ω) = %(r, ω) (2.4)

One way to make Maxwell’s equations invariant is to do the following substitu-
tion.

E→ H, H→ −E, D→ B, B→ −D (2.5)

M→ −J, J→M, %m → %, %→ %m (2.6)

The above swaps retain the right-hand rule for plane waves. When material
media is included, such that D = ε · E, B = µ · H, for anisotropic media,
Maxwell’s equations become

∇×E = −jωµ ·H−M (2.7)

∇×H = jωε ·E + J (2.8)

∇ · µ ·H = %m (2.9)

∇ · ε ·E = % (2.10)

In addition to the above swaps, one need further to swap

µ→ ε, ε→ µ (2.11)
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2.1 Unusual Swaps

If one adopts swaps where seemingly the right-hand rule is not preserved, e.g.,

E→ H, H→ E, M→ −J, J→ −M, (2.12)

%m → −%, %→ −%m, µ→ −ε, ε→ −µ (2.13)

The above swaps will leave Maxwell’s equations invariant, but when applied to
a plane wave, the right-hand rule seems violated.

The deeper reason is that solutions to Maxwell’s equations are not unique,
since there is a time-forward as well as a time-reverse solution. In the frequency
domain, this shows up in the choice of the sign of the k vector where in a plane
wave k = ±ω√µε. When one does a swap of µ → −ε and ε → −µ, k is still
indeterminate, and one can always choose a root where the right-hand rule is
retained.

2.2 Fictitious Magnetic Currents

Even though magnetic charges or monopoles do not exist, magnetic dipoles
do. For instance, a magnet can be regarded as a magnetic dipole. Also, it is
believed that electrons have spins, and these spins make electrons behave like
tiny magnetic dipoles in the presence of a magnetic field.

Also if we form electric current into a loop, it produces a magnetic field
that looks like the electric field of an electric dipole. This resembles a magnetic
dipole field. Hence, a magnetic dipole can be made using a small electric current
loop (see Figure 9).
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Figure 9:

Because of these similarities, it is common to introduce fictitious magnetic
charges and magnetic currents into Maxwell’s equations. One can think that
these magnetic charges always occur in pair and together. Thus, they do not
contradict the absence of magnetic monopole.

The electric current loops can be connected in series to make a toroidal
antenna as shown in Figure 10. The toroidal antenna is used to drive a current
in an electric dipole. Notice that the toroidal antenna acts as the primary
winding of a transformer circuit.
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Figure 10:
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